1. A canonical decomposition theory for metrics of a finite set;Bandelt;Adv. Math.,1992
2. A. Bruengger, A. Marzetta, J. Clausen, M. Perregaard, Joining forces in solving large-scale quadratic assignment problems, in: Proc. 11th Internat. Parallel Processing Symp. IPPS 97, Geneva, IEEE Computer Soc. Press, Silver Spring, MD, 1997, pp. 418–427.
3. R.E. Burkard, Locations with spatial interactions: the quadratic assignment problem, in: P.B. Mirchandani, R.L. Francis (Eds.), Discrete Location Theory, Ch. 9, Wiley, New York, 1990, pp. 387–437.
4. R.E. Burkard, E.Çela, G. Rote, G.J. Woeginger, The quadratic assignment problem with a monotone anti-Monge and a symmetric Toeplitz matrix: easy and hard cases, in: Proc. IPCO V, Lecture Notes in Computer Science, vol. 1084, Springer, Berlin, 1996, pp. 204–218.
5. G. Christopher, M. Farach, M. Trick, in: Proc. ESA IV, Lecture Notes in Computer Science, vol. 1136, Springer, Berlin, 1996, pp. 406–418.