Learning transient evolution of multidimensional reacting flows by multiscale Fourier neural operators
-
Published:2024
Issue:1-4
Volume:40
Page:105714
-
ISSN:1540-7489
-
Container-title:Proceedings of the Combustion Institute
-
language:en
-
Short-container-title:Proceedings of the Combustion Institute
Author:
Zhang Hao,
Weng Yuting,
Zhao Zhiwei,
Zhou DezhiORCID
Reference30 articles.
1. R. Wang, K. Kashinath, M. Mustafa, A. Albert, R. Yu, Towards physics-informed deep learning for turbulent flow prediction, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1457–1466.
2. Machine learning for fluid mechanics;Brunton;Annu. Rev. Fluid Mech.,2020
3. Multiscale physics-informed neural networks for stiff chemical kinetics;Weng;J. Phys. Chem. A,2022
4. Application of machine learning for filtered density function closure in MILD combustion;Chen;Combust. Flame,2021
5. Encoding physics to learn reaction–diffusion processes;Rao;Nat. Mach. Intell.,2023