Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation

Author:

Li Junfang,Xu Xiangjin

Publisher

Elsevier BV

Subject

General Mathematics

Reference29 articles.

1. Harnack inequalities on a manifold with positive or negative Ricci curvature;Bakry;Rev. Mat. Iberoamericana,1999

2. A lower bound for heat kernel;Cheeger;Comm. Pure Appl. Math.,1981

3. On the upper estimate of the heat kernel of a complete Riemannian manifold;Cheng;Amer. J. Math.,1981

4. Constrained and linear Harnack inequalities for parabolic equations;Chow;Invent. Math.,1997

5. The Ricci Flow: An Introduction;Chow,2004

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improvement of the sharp Li–Yau bound on closed manifolds;Archiv der Mathematik;2024-08-06

2. The inner radius of nodal domains in high dimensions;Advances in Mathematics;2024-08

3. Gradient Estimates for the CR Heat Equation on Closed Sasakian Manifolds;The Journal of Geometric Analysis;2024-05-21

4. Revisiting Li-Yau type inequalities on Riemannian manifolds;Journal of Mathematical Analysis and Applications;2024-04

5. Matrix Li–Yau–Hamilton estimates under Ricci flow and parabolic frequency;Calculus of Variations and Partial Differential Equations;2024-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3