1. A survey of label-noise representation learning: Past, present and future;Han,2020
2. Y. Yao, T. Liu, B. Han, M. Gong, J. Deng, G. Niu, M. Sugiyama, Dual t: Reducing estimation error for transition matrix in label-noise learning, in: Advances in Neural Information Processing Systems, 2020, pp. 7260–7271.
3. D. Hendrycks, M. Mazeika, D. Wilson, K. Gimpel, Using trusted data to train deep networks on labels corrupted by severe noise, in: Advances in Neural Information Processing Systems, 2018, pp. 10456–10465.
4. B. Han, J. Yao, G. Niu, M. Zhou, I. Tsang, Y. Zhang, M. Sugiyama, Masking: A new perspective of noisy supervision, in: Advances in Neural Information Processing Systems, 2018, pp. 5836–5846.
5. H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, Mixup: Beyond empirical risk minimization, in: International Conference on Learning Representations, 2018.