1. C. Xiong, S. Merity, R. Socher, Dynamic memory networks for visual and textual question answering, in: Proceedings of the 33nd International Conference on Machine Learning, 2016, pp. 2397–2406, http://proceedings.mlr.press/v48/xiong16.html.
2. G.H. Nguyen, J.B. Lee, R.A. Rossi, N.K. Ahmed, E. Koh, S. Kim, Continuous-time dynamic network embeddings, in: Proceedings of Companion of the The Web Conference 2018, 2018, pp. 969–976, https://doi.org/10.1145/3184558.3191526.
3. L.P. Heck, D. Hakkani-Tür, G. Tür, Leveraging knowledge graphs for web-scale unsupervised semantic parsing, in: Proceedings of the 14th Annual Conference of the International Speech Communication Association, 2013, pp. 1594–1598, http://www.isca-speech.org/archive/interspeech\_2013/i13\_1594.html.
4. A. Bordes, N. Usunier, A. García-Durán, J. Weston, O. Yakhnenko, Translating embeddings for modeling multi-relational data, in: Proceedings of Advances in Neural Information Processing Systems, 2013, pp . 2787–2795, http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.
5. Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph embedding by translating on hyperplanes, in: Proceedings of the Twenty-Eighth Conference on Artificial Intelligence, 2014, pp. 1112–1119, http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531.