1. I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and Harnessing Adversarial Examples, in: 3rd International Conference on Learning Representations, ICLR 2015, 2015, http://arxiv.org/abs/1412.6572.
2. C. C. Xie, Y. Wu, L.v.d. Maaten, A.L. Yuille, K. He, Feature Denoising for Improving Adversarial Robustness, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 501–509, http://dx.doi.org/10.1109/CVPR.2019.00059.
3. R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F.A. Wichmann, W. Brendel, ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, in: 7th International Conference on Learning Representations, ICLR 2019, 2019, http://dx.doi.org/10.48550/arXiv.1811.12231.
4. D. Hendrycks, T. Dietterich, Benchmarking Neural Network Robustness to Common Corruptions and Perturbations, in: 2019 Seventh International Conference on Learning Representations, 2019, http://dx.doi.org/10.48550/arxiv.1903.12261.
5. Q. Li, L. Shen, S. Guo, Z. Lai, Wavelet Integrated CNNs for Noise-Robust Image Classification, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 7243–7252, http://dx.doi.org/10.1109/CVPR42600.2020.00727.