Fedcs: Efficient communication scheduling in decentralized federated learning

Author:

Zong Ruixing,Qin Yunchuan,Wu Fan,Tang Zhuo,Li Kenli

Funder

National Natural Science Foundation of China

Government of Guangdong Province

Natural Science Foundation of Hunan Province

National Key Research and Development Program of China

Publisher

Elsevier BV

Subject

Hardware and Architecture,Information Systems,Signal Processing,Software

Reference33 articles.

1. Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges;Rodríguez-Barroso;Inf. Fusion,2023

2. Privacy protection in intelligent vehicle networking: A novel federated learning algorithm based on information fusion;Qu;Inf. Fusion,2023

3. Braintorrent: A peer-to-peer environment for decentralized federated learning;Roy,2019

4. A. Lalitha, S. Shekhar, T. Javidi, et al., Fully decentralized federated learning, in: Third Workshop on Bayesian Deep Learning (NeurIPS), 2018, p. 2.

5. SCA: Sybil-based collusion attacks of IIoT data poisoning in federated learning;Xiao;IEEE Trans. Ind. Inform.,2022

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decentralized medical image classification system using dual-input CNN enhanced by spatial attention and heuristic support;Expert Systems with Applications;2024-11

2. Communication-Efficient Training Workload Balancing for Decentralized Multi-Agent Learning;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23

3. Adaptive 5G-and-beyond network-enabled interpretable federated learning enhanced by neuroevolution;Science China Information Sciences;2024-06-27

4. Communication Optimization in Blockchain Peer-to-Peer Networks;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

5. A Tutorial on Federated Learning from Theory to Practice: Foundations, Software Frameworks, Exemplary Use Cases, and Selected Trends;IEEE/CAA Journal of Automatica Sinica;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3