Construction of novel Ag/AgI/Bi4Ti3O12 plasmonic heterojunction: A study focusing on the performance and mechanism of photocatalytic removal of tetracycline
Author:
Funder
Science and Technology Department of Henan Province
Publisher
Elsevier BV
Reference52 articles.
1. 1D/2D constructed Bi2S3/Bi2O2CO3 direct Z-Scheme heterojunction: a versatile photocatalytic material for boosted photodegradation, photoreduction and photoelectrochemical detection of water-based contaminants;Adhikari;J. Hazard Mater.,2021
2. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite for efficient water decontamination;Cai;Chin. J. Catal.,2023
3. Enhanced visible-light photocatalytic activity of Ag/AgI coupled Bi2O2CO3 microspheres;Chen;Mater. Lett.,2017
4. Ag bridged Z-scheme AgVO3/Bi4Ti3O12 heterojunction for enhanced antibiotic degradation;Chen;J. Phys. Chem. Solid.,2022
5. Surface doping of Bi4Ti3O12 with S: enhanced photocatalytic activity, mechanism and potential photodegradation application;Cheng;Mater. Res. Bull.,2022
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bi-doped initiates the crystal structure reconfiguration of Aurivillius, boosts piezoelectric response, and achieve PMS activation and antibiotic degradation in Bi2LaNbTiO9-BiOBr heterojunctions;Journal of Alloys and Compounds;2024-11
2. Recent progresses in improving the photocatalytic potential of Bi4Ti3O12 as emerging material for environmental and energy applications;Journal of Industrial and Engineering Chemistry;2024-10
3. Optimization of AgIO3/Bi4Ti3O12 composite photocatalyst to achieve enhanced photocatalytic performance by adjusting internal electric field via oxygen defect engineering;Journal of Environmental Management;2024-10
4. Construction of g-C3N4@Bi-MOF@BiOCl double Z-type heterojunctions for photodegradation of antibiotics under visible light irradiation: Mechanism, pathway, and toxicity assessment;Journal of Water Process Engineering;2024-09
5. Bi Nanoparticle/Bi4Ti3O12 Nanosheet/g-C3N4 Nanowire Heterojunction for the Piezocatalytic H2O2 Production;ACS Applied Nano Materials;2024-07-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3