Intelligent fault diagnosis system of induction motor based on transient current signal

Author:

Widodo Achmad,Yang Bo-Suk,Gu Dong-Sik,Choi Byeong-Keun

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference36 articles.

1. Yongming Y, Bin W. A review on induction motor online fault diagnosis. In: The 3rd international power electronic and motion control conference 2000 (IEEE(IPEMC). p. 1353–8.

2. Reliability improvement and economic benefits of on-line monitoring system for large induction machines;Siyambalapitiya;IEEE Trans Ind Appl,1990

3. A rotor condition monitor for squirrel-cage induction machines;Siyambalapitiya;IEEE Trans Ind Appl,1987

4. Thomson WD. On-line current monitoring to detect rotor winding and electromechanical problems in induction motor drives. In: IEE colloquium condition monitoring of electrical machines, London, January 30; 1995. p. 1–8.

5. Tavner PJ. Condition monitoring – the way ahead for large electrical machines. In: International conference electrical machine and drives, London; 1989. p. 297–302.

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliography;Topology Optimization and AI-based Design of Power Electronic and Electrical Devices;2024

2. Numerical methods for electromagnetic field analysis;Topology Optimization and AI-based Design of Power Electronic and Electrical Devices;2024

3. Review: Trends in AI Applications and Future Prospects;The Journal of The Institute of Electrical Engineers of Japan;2023-10-01

4. A Novel Motor Fault Diagnosis Method Based on Generative Adversarial Learning with Distribution Fusion of Discrete Working Conditions;Computer Modeling in Engineering & Sciences;2023

5. A Rapid Learning Model based on Selected Frequency Range Spectral Subtraction for the Data-Driven Fault Diagnosis of Manufacturing Systems;International Journal of Precision Engineering and Manufacturing-Smart Technology;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3