1. Ink removal from histopathology whole slide images by combining classification, detection and image generation models;Ali,2019
2. A combined radio-histological approach for classification of low grade gliomas;Bagari,2019
3. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M., Prastawa, M., Alberts, E., Lipkova, J., Freymann, J., Kirby, J., Bilello, M., Fathallah-Shaykh, H., Wiest, R., Kirschke, J., … Menze, B. (2018). Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. http://arxiv.org/abs/1811.02629.
4. Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy;Ben naceur;Med Image Anal,2020
5. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, international Miccai brainlesion workshop (BrainLes 2020) - Part II, lncs 12659;Crimi,2021