An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions
Author:
Funder
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality
Reference34 articles.
1. A bidirectional LSTM prognostics method under multiple operational conditions;Huang;IEEE Trans Ind Electron,2019
2. Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism;Zhang;Reliab Eng Syst Saf,2022
3. Highly efficient fault diagnosis of rotating machinery under time-varying speeds using LSISMM and small infrared thermal images;Li;IEEE Trans Syst Man Cybern Syst,2022
4. Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors;Zhuang;Reliab Eng Syst Saf,2021
5. Multi-bearing remaining useful life collaborative prediction: a deep learning approach;Ren;J Manuf Syst,2017
Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Remaining useful life prediction model of cross-domain rolling bearing via dynamic hybrid domain adaptation and attention contrastive learning;Computers in Industry;2025-01
2. GRU-AE-wiener: A generative adversarial network assisted hybrid gated recurrent unit with Wiener model for bearing remaining useful life estimation;Mechanical Systems and Signal Processing;2024-11
3. Label adversarial domain adaptation network for predicting remaining useful life based on cross-domain condition;Computers & Industrial Engineering;2024-11
4. Multi-sensor data fusion-enabled lightweight convolutional double regularization contrast transformer for aerospace bearing small samples fault diagnosis;Advanced Engineering Informatics;2024-10
5. A performance-interpretable intelligent fusion of sound and vibration signals for bearing fault diagnosis via dynamic CAME;Nonlinear Dynamics;2024-08-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3