Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints
Author:
Funder
USDOT
NSF
Publisher
Elsevier BV
Subject
Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality
Reference82 articles.
1. Probabilistic models for life-cycle performance of deteriorating structures: review and future directions;Frangopol;Progress in Structural Engineering and Materials,2004
2. Maintenance and operation of infrastructure systems;Sanchez-Silva;Journal of Structural Engineering,2016
3. A probabilistic computational framework for bridge network optimal maintenance scheduling;Bocchini;Reliability Engineering & System Safety,2011
4. Risk-based maintenance optimization of deteriorating bridges;Saydam;Journal of Structural Engineering,2014
5. Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes;Yang;Reliability Engineering & System Safety,2019
Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative analysis of offshore wind turbine blade maintenance: RL-based and classical strategies for sustainable approach;Reliability Engineering & System Safety;2025-01
2. A reinforcement learning agent for maintenance of deteriorating systems with increasingly imperfect repairs;Reliability Engineering & System Safety;2024-12
3. Reinforcement learning in reliability and maintenance optimization: A tutorial;Reliability Engineering & System Safety;2024-11
4. Deep reinforcement learning for maintenance optimization of a scrap-based steel production line;Reliability Engineering & System Safety;2024-09
5. Explainable, Deep Reinforcement Learning–Based Decision Making for Operations and Maintenance;Nuclear Technology;2024-08-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3