A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model
Author:
Publisher
Elsevier BV
Subject
Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality
Reference66 articles.
1. Predictive analytics for roadway maintenance: a review of current models, challenges, and opportunities;Karimzadeh;Civ Eng J,2020
2. Predictive maintenance for multi-component systems of repairables with remaining-useful-life prognostics and a limited stock of spare components;de Pater;Reliab Eng Syst Saf,2021
3. State-based opportunistic maintenance with multifunctional maintenance windows;Zhang;IEEE Trans Reliab,2020
4. Coordinated condition-based repair strategies for components of a multi-component maintenance system with discounts;Wijnmalen;Eur J Oper Res,1997
5. Joint optimization of monitoring quality and replacement decisions in condition-based maintenance;Nguyen;Reliab Eng Syst Saf,2019
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reinforcement learning in reliability and maintenance optimization: A tutorial;Reliability Engineering & System Safety;2024-11
2. Alleviating confirmation bias in perpetually dynamic environments: Continuous unsupervised domain adaptation-based condition monitoring (CUDACoM);Engineering Applications of Artificial Intelligence;2024-11
3. Deep reinforcement learning for maintenance optimization of a scrap-based steel production line;Reliability Engineering & System Safety;2024-09
4. Deep reinforcement learning for intelligent risk optimization of buildings under hazard;Reliability Engineering & System Safety;2024-07
5. Modeling Method of Storage Reliability Considering Performance Degradation and Sudden Failure;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3