Teaching High Performance Computing Using BeesyCluster and Relevant Usage Statistics*
Author:
Publisher
Elsevier BV
Subject
General Engineering
Reference14 articles.
1. Omar Abuzaghleh, Kathleen Goldschmidt, Yasser Elleithy, and Jeongkyu Lee. Implementing an afford- able high-performance computing for teaching-oriented computer science curriculum. Trans. Comput. Educ., 13(1):3:1-3:14, February 2013.
2. Martin Bernreuther, Markus Brenk, Hans-Joachim Bungartz, Ralf-Peter Mundani, and Ioan Lucian Muntean. Teaching high-performance computing on a high-performance cluster. In Sunderam et al. [14], pages 1-9.
3. Martin Berzins, Robert M. Kirby, and Cullen R. Johnson. Integrating teaching and research in hpc: Experiences and opportunities. In Sunderam et al. [14], pages 36-43.
4. Steven R. Brandt, Chirag Dekate, Phillip LeBlanc, and Thomas Sterling. Beowulf bootcamp: Teaching local high schools about hpc. In Proceedings of the 2010 TeraGrid Conference, TG ‘10, pages 4:1-4:7, New York, NY, USA, 2010. ACM.
5. Ping Chen. A high performance computing environment to support research and teaching at a minority serving institution. Department of Computer and Mathematical Sciences, University of Houston, Houston, USA.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Teaching High–performance Computing Systems – A Case Study with Parallel Programming APIs: MPI, OpenMP and CUDA;Lecture Notes in Computer Science;2024
2. The Idea of a Student Research Project as a Method of Preparing a Student for Professional and Scientific Work;Computational Science – ICCS 2023;2023
3. Teaching High-Performance Computing in Developing Countries: A Case Study in Mexican Universities;2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2022-05
4. A methodology for the professional training of the management and evaluation of HPC systems;Open Computer Science;2018-07-01
5. PAPA: A parallel programming assistant powered by IBM Watson cognitive computing technology;Journal of Computational Science;2018-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3