1. W. Gerstner and W.M. Kistler, Spiking neuron models - single neurons, populations, plasticity, Cambridge University Press, August 2002.
2. W. Maass, Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons, Advances in Neural Information Processing Systems (M. Mozer, M.I. Jordan, and T. Petsche, eds.), vol. 9, MIT Press, Cambridge University Press, 1997, pp. 211-217.
3. H. Sichtig, The SGE Framework -- Discovering Spatio-temopral Patterns in Biological Systems with Spiking Neural Networks (S), a Genetic Algorithm (G), and Expert Knowledge (E), PhD Dissertation, Binghamton University, Binghamton, NY 2009.
4. A.M. Rosen, H. Sichtig, J.D. Schaffer and P.M. Di Lorenzo, Taste-specific cell assemblies in a biologically informed model of the nucleus of the solitary tract. J Neurophysiol. 2010 Jul;104(1):4-17.
5. L. J. Eshelman, The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination, Foundations of Genetic Algorithms (Gregory J. E. Rawlins, ed.), Morgan Kaufmann, San Mateo, CA, 1990, pp. 265-283.