1. Alp, D., Acar, E., Zhao, Y., Matas Navarro, R., Mattina, M., Whatmough, P.N., Saligrama, V., 2021. Federated Learning Based on Dynamic Regularization URL: https://arxiv.org/abs/2111.04263v2, doi:10.48550/arxiv.2111.04263.
2. Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S., 2019. Federated Learning with Personalization Layers URL: https://arxiv.org/abs/1912.00818v1, doi:10.48550/arxiv.1912.00818.
3. Basu, P., Roy, T.S., Naidu, R., Muftuoglu, Z., Singh, S., Mireshghallah, F., 2021. Benchmarking Differential Privacy and Federated Learning for BERT Models URL: https://arxiv.org/abs/2106.13973v2, doi:10.48550/arxiv.2106.13973.
4. Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Fernandez-Marques, J., Gao, Y., Sani, L., Li, K.H., Parcollet, T., Porto, P., De Gusmão, B., Lane, N.D., 2020 a. Flower: A Friendly Federated Learning Framework. URL: https://flower.dev/.
5. Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Fernandez-Marques, J., Gao, Y., Sani, L., Li, K.H., Parcollet, T., Porto, P., De Gusmão, B., Lane, N.D., 2020 b. Flower: A Friendly Federated Learning Research Framework URL: https://arxiv.org/abs/2007.14390v5, doi:10.48550/arxiv.2007.14390.