A hybrid deep learning approach for Assamese toxic comment detection in social media
-
Published:2024
Issue:
Volume:235
Page:2297-2306
-
ISSN:1877-0509
-
Container-title:Procedia Computer Science
-
language:en
-
Short-container-title:Procedia Computer Science
Author:
Neog Mandira,Baruah Nomi
Reference35 articles.
1. Elbagir S, Yang J. Twitter sentiment analysis using natural language toolkit and VADER sentiment. In Proceedings of the international multi-conference of engineers and computer scientists 2019 Mar 13 (Vol. 122, p. 16).
2. Dubey K, Nair R, Khan MU, Shaikh S. Toxic comment detection using lstm. In2020 Third International Conference on Advances in Electronics, Computers and Communications (ICAECC) 2020 Dec 11 (pp. 1-8). IEEE.
3. Perera A, Fernando P. Accurate cyberbullying detection and prevention on social media. Procedia Computer Science. 2021 Jan 1;181:605-11.
4. Comparison of deep learning models and various text pre-processing techniques for the toxic comments classification;Maslej-Kresnakova;Applied Sciences,2020
5. Rani P, Kumar R, Jain A. A Hybrid Approach for Feature Selection Based on Correlation Feature Selection and Genetic Algorithm. International Journal of Software Innovation (IJSI). 2022 Jan 1;10(1):1-7.