1. Baroni, M., Dinu, G., Kruszewski, G., 2014. Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors, in: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 238–247.
2. Chen, W., Ku, L., 2016. UTCNN: a deep learning model of stance classification on social media text, in: COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan, pp. 1635– 1645.
3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
4. Conroy, N.J., Rubin, V.L., Chen, Y., 2015. Automatic deception detection: Methods for finding fake news. Proceedings of the Association for Information Science and Technology 52, 1–4.
5. Hasan, K.S., Ng, V., 2013. Stance classification of ideological debates: Data, models, features, and constraints, in: Proceedings of the Sixth International Joint Conference on Natural Language Processing, pp. 1348–1356.