Generating Items Recommendations by Fusing Content and User-Item based Collaborative Filtering
Author:
Publisher
Elsevier BV
Subject
General Engineering
Reference17 articles.
1. Kawasaki, Manami, and Takashi Hasuike. (2017) “A recommendation system by collaborative filtering including information and characteristics on users and items.” IEEE Symposium Series on Computational Intelligence (SSCI): 1-8.
2. Learning vector-space representations of items for recommendations using word embedding models.;Krishnamurthy;Procedia Computer Science,2016
3. Sun, Tieli, Lijun Wang, and Qinghe Guo. (2009) “A Collaborative Filtering Recommendation Algorithm Based on Item Similarity of User Preference.” IEEE International Workshop on Knowledge Discovery and Data Mining: 60-63.
4. Toward the next generation of recommender systems: A survey of the state-of- the-art and possible extensions.;Adomavicius;IEEE Transactions on Knowledge & Data Engineering,2005
5. Foltz, P.W., and S.T. Dumais. (1992) “Personalized information delivery: an analysis of information filtering methods”, Communications of the ACM 35 (12): 51-60.
Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Development of Content-Based Filtering Model for Recommendation System Using Multiple Factors related to object Preference;2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA);2024-08-06
2. State of art and emerging trends on group recommender system: a comprehensive review;International Journal of Multimedia Information Retrieval;2024-05-02
3. Precision-Driven Product Recommendation Software: Unsupervised Models, Evaluated by GPT-4 LLM for Enhanced Recommender Systems;Software;2024-02-29
4. Heterogeneous deep graph convolutional network with iterative deep graph learning for Covid-19 inline recommendation;2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML);2023-11-03
5. Dynamic interest modeling via dual learning for recommendation;Multimedia Tools and Applications;2023-09-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3