Author:
Liu Xu,Gherbi Abdelouahed,Li Wubin,Cheriet Mohamed
Reference18 articles.
1. ARQU, O.C., 2015. DEMAND FORECAST MODEL FOR A BICYCLE SHARING SERVICE. URL: https://upcommons.upc.edu/bitstream/handle/2117/78121/Tesina.pdf?sequence=1&isAllowed=y
2. Ashqar, H., Elhenawy, M., Almannaa, M., Ghanem, A., Rakha, H., House, L., 2017. Modeling bike availability in a bike-sharing system using machine learning, in: MTITS, p. 1. doi:10.1109/MTITS.2017.8005700.
3. Chen, L., Zhang, D., Wang, L., Yang, D., Ma, X., Li, S., Wu, Z., Pan, G., Nguyen, T.M.T., Jakubowicz, J., 2016. Dynamic cluster-based over-demand prediction in bike sharing systems, in: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM, New York, NY, USA. pp. 841–852. URL: http://doi.acm.org/10.1145/2971648.2971652, doi:10.1145/2971648.2971652.
4. Bike-sharing: History;DeMaio;impacts, models of provision, and future. Journal of public transportation,2009
5. Feng, Y., Wang, S., 2017. A forecast for bicycle rental demand based on random forests and multiple linear regression, in: 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), IEEE. pp. 101–105.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献