Author:
Viloria Amelec,Lizardo Zelaya Nelson Alberto,Mercado-Caruzo Nohora
Reference13 articles.
1. Liu, T., Ye, Y., Yin, S., Chen, H., Xu, G., Lu, Y., & Chen, Y. (2019, May). Digital Predistortion Linearization with Deep Neural Networks for 5G Power Amplifiers. In 2019 European Microwave Conference in Central Europe (EuMCE) (pp. 216-219). IEEE.
2. Phartiyal, D., & Rawat, M. (2019, February). LSTM-Deep Neural Networks based Predistortion Linearizer for High Power Amplifiers. In 2019 National Conference on Communications (NCC) (pp. 1-5). IEEE.
3. Viloria, A., Hernández Palma, H., Gamboa Suarez, R., Niebles Núẽz, W., & Solórzano Movilla, J. (2020). Intelligent Model for Electric Power Management: Patterns. In Journal of Physics: Conference Series (Vol. 1432). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1432/1/012032.
4. Adaptive deep learning aided digital predistorter considering dynamic envelope;Sun,2020
5. Tripathi, G. C., Rawat, M., & Rawat, K. (2019, October). Swish Activation Based Deep Neural Network Predistorter for RF-PA. In TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (pp. 1239-1242). IEEE.