Discussion on Machine Learning and Deep Learning based Makeup Considered Eye Status Recognition for Driver Drowsiness
Author:
Publisher
Elsevier BV
Subject
General Engineering
Reference14 articles.
1. Oraan Khunpisuth, Taweechai Chotchinasri, Varakorn Koschakosai and Narit Hnoohom. (2016) “Driver Drowsiness Detection using Eye-Closeness Detection.” the 12th Int. Conf. on Signal-Image Technology& Internet-Based Systems 661–668.
2. Kingshuk Mukherjee, Rakesh Karmakar and Souvik Das. (2014) “Effective Estimation of Driver Drowsiness Based on Eye Status Detection and Analysis.” 2014 Int. Conf. on Devices, Circuits and Communications (ICDCCom).
3. Cui Xu, Ying Zheng and Zengfu Wang. (2008) “Efficient Eye States Detection in Real-Time for Drowsy Driving Monitoring System.” IEEE Int. Conf. on Information and Automation 170–174.
4. Ashish Kumar and Rusha Patra, (2018) “Driver Drowsiness Monitoring System using Visual Behaviour and Machine Learning.” 2018 IEEE Symp. on Computer Applications& Industrial Electronics (ISCAIE)339–344.
5. “Determination of optimal electroen-cephalography recording locations for detecting drowsy driving;Zhang;IET Intelligent Transport Systems,2018
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Critical review on data-driven approaches for learning from accidents: Comparative analysis and future research;Safety Science;2024-03
2. Real-time driver monitoring system with facial landmark-based eye closure detection and head pose recognition;Scientific Reports;2023-10-25
3. Hybrid machine learning approach for human activity recognition;International Journal of Computer Applications in Technology;2023
4. A Deep Learning-Based Method for Drivers’ Shoe-Wearing Recognition;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023
5. Deep Learning Architecture for a Real-Time Driver Safety Drowsiness Detection System;Advances in Computational Intelligence and Robotics;2022-10-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3