1. H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, and Z. Li, “Deep multi-view spatial-temporal network for taxi demand prediction,” in Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018, 2018. [Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16069
2. L. Wang, X. Geng, X. Ma, F. Liu, and Q. Yang, “Crowd flow prediction by deep spatio-temporal transfer learning,” CoRR, vol. abs/1802.00386, 2018. [Online]. Available: http://arxiv.org/abs/1802.00386
3. Cans: Towards congestion-adaptive and small stretch emergency navigation with wireless sensor networks;Wang;IEEE Transactions on Mobile Computing,2016
4. Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding mobility based on gps data,” in Proceedings of the 10th international conference on Ubiquitous computing. ACM, 2008, pp. 312–321.
5. Z. Li, M. Ji, J. G. Lee, L. A. Tang, Y. Yu, J. Han, and R. Kays, “Movemine:mining moving object databases,” in ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, Usa, June, 2010, pp. 1203–1206.