Selection of Optimal Frequency Bands of the Electroencephalogram Signal in Eye-brain-computer Interface

Author:

Sotnikov P.,Finagin K.,Vidunova S.

Publisher

Elsevier BV

Subject

General Engineering

Reference6 articles.

1. Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general;Zander;J Neural Eng,2011

2. Shishkin SL, Nuzhdin YO, Svirin EP, Fedorova AA, and Slobodskoy-Plusnin YY. Toward a fluent eye-brain-computer interface: EEG negativity marks visual fixations used to control a game. In: Proceeding of the 7th International IEEE EMBS Conference on Neural Engineering (IEEE/EMBS2015); 2015.

3. Improving eye-brain-computer interface performance by using electroencephalogram frequency components;Shishkin;Bulletin of Russian State Medical University,2016

4. Selection of optimal frequency bands of the electroencephalogram signal in brain-computer interface;Sotnikov;Science and Education of the Bauman MSTU,2015

5. Shi Y, Eberhart R. Empirical study of particle swarm optimization. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation 1999; p. 1945-50.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CluSem: Accurate clustering-based ensemble method to predict motor imagery tasks from multi-channel EEG data;Journal of Neuroscience Methods;2021-12

2. CluSem: Accurate Clustering-based Ensemble Method to Predict Motor Imagery Tasks from Multi-channel EEG Data;2021-09-06

3. A Utility Human Machine Interface Using Low Cost EEG Cap and Eye Tracker;2021 9th International Winter Conference on Brain-Computer Interface (BCI);2021-02-22

4. Neural Network Analysis of Electroencephalograms Graphical Representation;Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2;2020-12-17

5. Motor imagery recognition in electroencephalograms using convolutional neural networks;Computer Optics;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3