1. Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors.;Baroni;ACL,2014
2. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.
3. J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532-1543.
4. K. Miller and A. Oswalt, “Fake news headline classification using neural networks with attention.”.
5. W. Chen and L. Ku, “UTCNN: a deep learning model of stance classification on social media text,” in COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan, 2016, pp. 1635-1645. [Online]. Available: http://aclweb.org/anthology/C/C16/C16-1154.pdf.