Stance-In-Depth Deep Neural Approach to Stance Classification

Author:

Rajendran Gayathri,Chitturi Bhadrachalam,Poornachandran Prabaharan

Publisher

Elsevier BV

Subject

General Engineering

Reference19 articles.

1. Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors.;Baroni;ACL,2014

2. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

3. J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532-1543.

4. K. Miller and A. Oswalt, “Fake news headline classification using neural networks with attention.”.

5. W. Chen and L. Ku, “UTCNN: a deep learning model of stance classification on social media text,” in COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan, 2016, pp. 1635-1645. [Online]. Available: http://aclweb.org/anthology/C/C16/C16-1154.pdf.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving stance detection accuracy in low-resource languages: a deep learning framework with ParsBERT;International Journal of Data Science and Analytics;2024-09-10

2. Classification of News Category Using Contextual Features;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

3. Detection of Turkish Fake News From Tweets With BERT Models;IEEE Access;2024

4. News Article Topic Classification Using Embeddings;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

5. Fin-STance: A Novel Deep Learning-Based Multi-Task Model for Detecting Financial Stance and Sentiment;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3