1. Lee, W., Stolfo, S. J., Chan, P. K., Eskin, E., Fan, W., Miller, M., ... & Zhang, J. (2001). Real time data mining-based intrusion detection. In DARPA Information Survivability Conference & Exposition II, 2001. DISCEX’01. Proceedings (Vol. 1, pp. 89-100). IEEE.
2. Dokas, P., Ertoz, L., Kumar, V., Lazarevic, A., Srivastava, J., & Tan, P. N. (2002, November). Data mining for network intrusion detection. In Proc. NSF Workshop on Next Generation Data Mining (pp. 21-30).
3. Applying genetic algorithm for classifying anomalous TCP/IP packets;Shon;Neurocomputing,2006
4. Cardoso-Cachopo, A., & Oliveira, A. L. (2007, March). Semi-supervised single-label text categorization using centroid-based classifiers. In Proceedings of the 2007 ACM symposium on Applied computing (pp. 844-851). ACM. Axelsson, Stefan. Intrusion detection systems: A survey and taxonomy. Vol. 99. Technical report, 2000.
5. An overview of anomaly detection techniques: Existing solutions and latest technological trends;Patcha;Computer networks,2007