1. Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung, V.J., Egele, M., Coskun, A.K., 2017. Diagnosing performance variations in hpc applications using machine learning, in: International Supercomputing Conference, Springer. pp. 355-373. doi:10.1007/978-3-319-58667-0_19.
2. Toward automated anomaly identification in large-scale systems;Lan;IEEE Transactions on Parallel and Distributed Systems,2010
3. Guan, Q., Fu, S., 2013. Adaptive anomaly identification by exploring metric subspace in cloud computing infrastructures, in: 2013 IEEE 32nd International Symposium on Reliable Distributed Systems, pp. 205-214. doi:10.1109/SRDS.2013.29.
4. Performance metric selection for autonomic anomaly detection on cloud computing systems;Fu,2011
5. Zhang, H., You, H., Hadri, B., Fahey, M., 2012. Hpc usage behavior analysis and performance estimation with machine learning techniques, in: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp). p. 1.