1. de Arruda, G.D., Roman, N.T., Monteiro, A.M., 2015. An annotated corpus for sentiment analysis in political news, in: Proceedings of the 10th Brazilian Symposium in Information and Human Language Technology, Sociedade Brasileira de Computação, Natal, Brazil. pp. 101–110. URL: https://www.aclweb.org/anthology/W15-5614.
2. Balahur, A., Steinberger, R., 2009. Rethinking sentiment analysis in the news: from theory to practice and back. Proceeding of WOMSA 9.
3. Balahur, A., Steinberger, R., Kabadjov, M., Zavarella, V., van der Goot, E., Halkia, M., Pouliquen, B., Belyaeva, J., 2010. Sentiment analysis in the news, in: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), European Language Resources Association (ELRA), Valletta, Malta. URL: http://www.lrec-conf.org/proceedings/lrec2010/pdf/909_Paper.pdf.
4. Bhardwaj, V., Passonneau, R., Salleb-Aouissi, A., Ide, N., 2010. Anveshan: A framework for analysis of multiple annotators’ labeling behavior, in: Proceedings of the Fourth Linguistic Annotation Workshop, Association for Computational Linguistics, Uppsala, Sweden. pp. 47–55. URL: https://www.aclweb.org/anthology/W10-1806.
5. Fair and balanced? quantifying media bias through crowdsourced content analysis;Budak;Public Opinion Quarterly,2016