1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., (2015. TensorFlow: Large-scale machine learning on heterogeneous systems. URL: https://www.tensorflow.org/. software available from tensorflow.org.
2. Aggarwal, J., Nandhakumar, N., (1988. On the computation of motion from sequences of images-A review. Proceedings of the IEEE 76, 917–935. doi:10.1109/5.5965. conference Name: Proceedings of the IEEE.
3. Bernardin, K., Elbs, A., Stiefelhagen, R., (2006. Multiple object tracking performance metrics and evaluation in a smart room environment, Citeseer. p. 91.
4. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R., (1994. Signature verification using a” siamese” time delay neural network, in: Advances in neural information processing systems, pp. 737–744.
5. Cao, X., Chen, B.C., Lim, S.N., (2019. Unsupervised Deep Metric Learning via Auxiliary Rotation Loss. arXiv:1911.07072 [cs] URL: http://arxiv.org/abs/1911.07072. arXiv: 1911.07072.