Machine learning and transport simulations for groundwater anomaly detection
Author:
Funder
National Science Foundation
Publisher
Elsevier BV
Subject
Applied Mathematics,Computational Mathematics
Reference36 articles.
1. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central texas as one model for thermogenic shale-gas assessment;Jarvie;Am. Assoc. Pet. Geol. Bull.,2007
2. Distribution and origin of groundwater methane in the Wattenberg oil and gas field of northern Colorado;Li;Environ. Sci. Technol.,2014
3. Concurrence of aqueous and gas phase contamination of groundwater in the wattenberg oil and gas field of northern colorado;Li;Water Res.,2016
4. Real-time Bayesian anomaly detection in streaming environmental data;Hill;Water Resour. Res.,2009
5. Network anomaly detection by cascading K-means clustering and C4.5 decision tree algorithm;Muniyandi;Procedia Eng.,2012
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Inverse Problem of Permeability Field under Multi-Well Conditions Using TgCNN-Based Surrogate Model;Processes;2024-09-09
2. Harnessing machine learning for assessing climate change influences on groundwater resources: A comprehensive review;Heliyon;2024-09
3. Time-Series Anomaly Detection in Automated Vehicles Using D-CNN-LSTM Autoencoder;IEEE Transactions on Intelligent Transportation Systems;2024-08
4. Dynamic surface river pollution identification by a hybrid multivariate-based anomaly detection algorithm;Journal of Cleaner Production;2024-08
5. The social force model: a behavioral modeling approach for information propagation during significant events;International Journal of Computers and Applications;2024-07-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3