Frei-Chen bases based lossy digital image compression technique

Author:

Al-khassaweneh Mahmood,AlShorman Omar

Abstract

In the big data era, image compression is of significant importance in today’s world. Importantly, compression of large sized images is required for everyday tasks; including electronic data communications and internet transactions. However, two important measures should be considered for any compression algorithm: the compression factor and the quality of the decompressed image. In this paper, we use Frei-Chen bases technique and the Modified Run Length Encoding (RLE) to compress images. The Frei-Chen bases technique is applied at the first stage in which the average subspace is applied to each 3 × 3 block. Those blocks with the highest energy are replaced by a single value that represents the average value of the pixels in the corresponding block. Even though Frei-Chen bases technique provides lossy compression, it maintains the main characteristics of the image. Additionally, the Frei-Chen bases technique enhances the compression factor, making it advantageous to use. In the second stage, RLE is applied to further increase the compression factor. The goal of using RLE is to enhance the compression factor without adding any distortion to the resultant decompressed image. Integrating RLE with Frei-Chen bases technique, as described in the proposed algorithm, ensures high quality decompressed images and high compression rate. The results of the proposed algorithms are shown to be comparable in quality and performance with other existing methods.

Publisher

Emerald

Subject

Computer Science Applications,Information Systems,Software

Reference49 articles.

1. A secure and high-capacity data-hiding method using compression, encryption and optimized pixel value differencing;IEEE Access,2018

2. Real-time sorting and lossless compression of data on FPGA,2018

3. Random projection and orthonormality for lossy image compression;Image Vis. Comput.,2007

4. Differential-clustering compression algorithm for real-time aerospace telemetry data;IEEE Access,2018

5. Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3