Integrated data reduction model in wireless sensor networks

Author:

El-Sayed Walaa M.,El-Bakry Hazem M.,El-Sayed Salah M.

Abstract

Wireless sensor networks (WSNs) are periodically collecting data through randomly dispersed sensors (motes), which typically consume high energy in radio communication that mainly leans on data transmission within the network. Furthermore, dissemination mode in WSN usually produces noisy values, incorrect measurements or missing information that affect the behaviour of WSN. In this article, a Distributed Data Predictive Model (DDPM) was proposed to extend the network lifetime by decreasing the consumption in the energy of sensor nodes. It was built upon a distributive clustering model for predicting dissemination-faults in WSN. The proposed model was developed using Recursive least squares (RLS) adaptive filter integrated with a Finite Impulse Response (FIR) filter, for removing unwanted reflections and noise accompanying of the transferred signals among the sensors, aiming to minimize the size of transferred data for providing energy efficient. The experimental results demonstrated that DDPM reduced the rate of data transmission to ∼20%. Also, it decreased the energy consumption to 95% throughout the dataset sample and upgraded the performance of the sensory network by about 19.5%. Thus, it prolonged the lifetime of the network.

Publisher

Emerald

Subject

Computer Science Applications,Information Systems,Software

Reference16 articles.

1. Pragmatic approach of data mining in wireless sensor networks: an innovative analysis;Int. J. Eng. Res. Technol. (IJERT),2017

2. Application of data mining techniques in wireless sensor networks: review;IRACST – Int. J. Comput. Networks Wireless Commun. (IJCNWC),2017

3. Proceedings of the international, conference on advanced intelligent systems and informatics 2017;Adv. Intell. Syst. Comput.,2018

4. Distributed data mining in wireless sensor network using fuzzy naïve byes;Int. J. Eng. Comput. Sci.,2017

5. Investigation of faults, errors and failures in wireless sensor network: a systematical survey;Int. J. Adv. Comput. Res.,2013

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3