Using the hierarchical temporal memory spatial pooler for short-term forecasting of electrical load time series

Author:

Osegi E.N.

Abstract

In this paper, an emerging state-of-the-art machine intelligence technique called the Hierarchical Temporal Memory (HTM) is applied to the task of short-term load forecasting (STLF). A HTM Spatial Pooler (HTM-SP) stage is used to continually form sparse distributed representations (SDRs) from a univariate load time series data, a temporal aggregator is used to transform the SDRs into a sequential bivariate representation space and an overlap classifier makes temporal classifications from the bivariate SDRs through time. The comparative performance of HTM on several daily electrical load time series data including the Eunite competition dataset and the Polish power system dataset from 2002 to 2004 are presented. The robustness performance of HTM is also further validated using hourly load data from three more recent electricity markets. The results obtained from experimenting with the Eunite and Polish dataset indicated that HTM will perform better than the existing techniques reported in the literature. In general, the robustness test also shows that the error distribution performance of the proposed HTM technique is positively skewed for most of the years considered and with kurtosis values mostly lower than a base value of 3 indicating a reasonable level of outlier rejections.

Publisher

Emerald

Subject

Computer Science Applications,Information Systems,Software

Reference29 articles.

1. A data mining based load forecasting strategy for smart electrical grids;Adv. Eng. Informat.,2016

2. Hybrid Short-term Load Forecasting Using Principal Component Analysis and MEA-Elman Network,2016

3. B. Hayes, J. Gruber, M. Prodanovic, Short-term load forecasting at the local level using smart meter data. In PowerTech, IEEE Eindhoven (2015) (pp. 1-6). IEEE.

4. Short term load forecasting using wavelet transform combined with Holt-Winters and weighted nearest neighbor models;Int. J. Electric. Power Energy Syst.,2015

5. Forecasting time series with multiple seasonal cycles using neural networks with local learning,2013

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3