1. V.B. Artur, Yu.M. Ermol’ev, Yu.M. Kaniovskiı̆, Adaptivnye protsessy rosta s proizvol’nymi prirashcheniyami: dostizhimye i nedostizhimye komponenty terminal’nogo mnozhestva. (Russian) [Adaptive growth processes with arbitrary increments: reachable and nonreachable components of the terminal set] [Preprint], 88-33. Akad. Nauk Ukrain. SSR, Inst. Kibernet., Kiev, 1988
2. V.B. Artur, Yu.M. Ermol’ev, Yu.M. Kaniovskiı̆, Predel’nye teoremy dlya doleı̆sharov v obobshchennoı̆skheme urny s sharami N tsvetov, dobavlyaemymi portsiyami sluchaı̆nogo ob’ema. (Russian) [Limit theorems for fractions of balls in a generalized urn scheme with balls of N colors that can be supplemented with portions of random size] [Preprint], 87-8. Akad. Nauk Ukrain. SSR, Inst. Kibernet., Kiev, 1987
3. Adaptive growth processes that can be modeled by urn schemes;Artur;Kibernetika (Russian) (Kiev),1987
4. W.B. Arthur, Yu.M. Ermol’ev, Yu.M. Kaniovskiı̆, Strong laws for a class of path-dependent stochastic processes with applications, in: Stochastic Optimization (Kiev, 1984), 287–300, Lecture Notes in Control and Inform. Sci., vol. 81, Springer, Berlin–New York, 1986
5. V.B. Artur, Yu.M. Ermol’ev, Yu.M. Kaniovskiı̆, Dal’neı̆shie rezul’taty po obobshchennoı̆skheme urny Polia. (Russian) [Further results on the generalized Polya urn scheme] [Preprint], 86-51. Akad. Nauk Ukrain. SSR, Inst. Kibernet., Kiev, 1986