A physics-constrained data-driven workflow for predicting bottom hole pressure using a hybrid model of artificial neural network and particle swarm optimization

Author:

Zhu Zhaopeng,Liu Zihao,Song XianzhiORCID,Zhu Shuo,Zhou Mengmeng,Li Gensheng,Duan Shiming,Ma BaodongORCID,Ye Shanlin,Zhang RuiORCID

Funder

China National Petroleum Corporation

Science Foundation of China University of Petroleum, Beijing

National Key Research and Development Program of China

Ministry of Science and Technology of the People's Republic of China

China University of Petroleum, Beijing

Publisher

Elsevier BV

Reference36 articles.

1. Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs;Ahmadi;Petroleum,2019

2. Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool;Ahmadi;Petroleum,2015

3. Utilizing machine learning methods to estimate flowing bottom-hole pressure in unconventional gas condensate tight sand fractured wells in Saudi arabia;Al Shehri,2020

4. Development of machine learning methodology for polymer gels screening for injection wells;Aldhaheri;J. Petrol. Sci. Eng.,2017

5. Data-driven neural network model to predict equivalent circulation density ECD;Alkinani,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3