1. Establishing strong imputation performance of a denoising autoencoder in a wide range of missing data problems;Abiri;Neurocomputing,2019
2. Agricultural Research Service, U.D.o.A., 2021. FoodData Central. URL: 〈https://fdc.nal.usda.gov/〉. (Accessed 11 August 2021).
3. Summary of survey of food composition tables and nutrient data banks in europe;Arab;Ann. Nutr. Metab.,1985
4. Boquet, G., Vicario, J.L., Morell, A., Serrano, J., 2019. Missing data in traffic estimation: a variational autoencoder imputation method. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. pp. 2882–2886.
5. Camino, R.D., Hammerschmidt, C.A., State, R., 2019. Improving Missing Data Imputation with Deep Generative Models. arXiv preprint arXiv:1902.10666.