Comparing an Artificial Neural Network to Logistic Regression for Predicting ED Visit Risk Among Patients With Cancer: A Population-Based Cohort Study
Author:
Funder
ICES
Ontario Ministry of Health and Long-Term Care
Publisher
Elsevier BV
Subject
Anesthesiology and Pain Medicine,Neurology (clinical),General Nursing
Reference19 articles.
1. Why do cancer patients visit the emergency department near the end of life?;Barbera;CMAJ,2010
2. Why do patients with cancer visit emergency departments? Results of a 2008 population study in North Carolina;Mayer;J Clin Oncol,2011
3. Emergency department use by recently diagnosed cancer patients in California;Lash;JCSO,2017
4. Patient-reported symptoms improve performance of risk prediction models for ED among patients with cancer: a population-wide study in Ontario using administrative data;Sutradhar;J Pain Symptom Manage,2019
5. Do patient-reported symptoms predict emergency department visits in cancer patients? A population-based analysis;Barbera;Ann Emerg Med,2013
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Extensive Investigation into the Use of Machine Learning Tools and Deep Neural Networks for the Recognition of Skin Cancer: Challenges, Future Directions, and a Comprehensive Review;Symmetry;2024-03-18
2. Risk Prediction of Emergency Department Visits in Patients With Lung Cancer Using Machine Learning: Retrospective Observational Study;JMIR Medical Informatics;2023-12-06
3. Risk Prediction of Emergency Department Visits in Patients With Lung Cancer Using Machine Learning: Retrospective Observational Study (Preprint);2023-09-24
4. Poor handling of continuous predictors in clinical prediction models using logistic regression: a systematic review;Journal of Clinical Epidemiology;2023-09
5. Survival Prediction of Esophageal Squamous Cell Carcinoma Based on the Prognostic Index and Sparrow Search Algorithm-Support Vector Machine;Current Bioinformatics;2023-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3