Tool wear prediction in end milling of Ti-6Al-4V through Kalman filter based fusion of texture features and cutting forces
Author:
Publisher
Elsevier BV
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering
Reference24 articles.
1. Real-time tool wear monitoring in milling using a cutting condition independent method;Nouri;International Journal of Machine Tools and Manufacture,2015
2. In-process detection of tool breakages using time series monitoring of cutting forces;Altintas;International Journal of Machine Tools and Manufacture,1988
3. Comprehensive tool wear estimation in finish-machining via multivariate time-series analysis of 3-D cutting forces;Yao;CIRP Annals-Manufacturing Technology,1990
4. Development of a tool wear observer model for online tool condition monitoring and control in machining nickel-based alloys;Chen;The International Journal of Advanced Manufacturing Technology,2009
5. TWEM, a method based on cutting forces—monitoring tool wear in face milling;Kuljanic;International Journal of Machine Tools and Manufacture,2005
Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An innovative multisource multibranch metric ensemble deep transfer learning algorithm for tool wear monitoring;Advanced Engineering Informatics;2024-10
2. Multi-sectional SVD-based machine learning for imagery signal processing and tool wear prediction during CNC milling of Inconel 718;The International Journal of Advanced Manufacturing Technology;2024-04-18
3. Kalman filtering for estimation of closed-die forging load based on shop floor data;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-10-21
4. Monitoring of Machining Process of Machine Tool based on Artificial Neural Network using Serial Data;2023 IEEE Smart World Congress (SWC);2023-08-28
5. Data-driven virtual sensor for powertrains based on transfer learning;Bulletin of the Polish Academy of Sciences Technical Sciences;2023-08-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3