1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv. arXiv:1603.04467v2.
2. New High-Tech Flexible Networks for the Monitoring of Deep-Sea Ecosystems;Aguzzi;Environ. Sci. Technol.,2019
3. Challenges To The Assessment Of Benthic Populations And Biodiversity As A Result Of Rhythmic Behaviour: Video Solutions From Cabled Observatories;Aguzzi;Oceanogr. Mar. Biol. Annu. Rev.,2012
4. Distance-based tests for homogeneity of multivariate dispersions;Anderson;Biometrics,2006
5. Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation;Beijbom;PLoS ONE,2015