Accounting for dynamic speed limit control in a stochastic traffic environment: A reinforcement learning approach

Author:

Zhu Feng,Ukkusuri Satish V.

Publisher

Elsevier BV

Subject

Computer Science Applications,Transportation,Automotive Engineering,Civil and Structural Engineering

Reference42 articles.

1. Integration of environmental objectives in a system optimal dynamic traffic assignment model;Aziz;Comput.-Aided Civil Infrastruct. Eng.,2012

2. Aziz, H., Zhu, F., Ukkusuri, S.V., 2013. Reinforcement learning based signal control using R-Markov Average Reward Technique (RMART) accounting for neighborhood congestion information sharing. In: Proceedings of 92nd Transportation Research Board Meeting, National Academies (Washington, D.C., January 2013).

3. Brilon, W., Geistefeldt, J., Regler, M., 2005. Reliability of freeway traffic flow: a stochastic concept of capacity. In: Proceedings of the 16th International Symposium on Transportation and Traffic Theory, College Park, Maryland, pp. 125–144.

4. Implementing the concept of reliability for highway capacity analysis;Brilon;Trans. Res. Rec.: J. Transport. Res. Board,2007

5. Optimal motorway traffic flow control involving variable speed limits and ramp metering;Carlson;Transport. Sci.,2010

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Reinforcement Learning Technique for Traffic Metering in Connected Urban Street Networks;Transportation Research Record: Journal of the Transportation Research Board;2024-06-19

2. Deep Q‐network learning‐based active speed management under autonomous driving environments;Computer-Aided Civil and Infrastructure Engineering;2024-06-03

3. Multi-Agent Deep Reinforcement Learning for Multi-Lane Freeways Differential Variable Speed Limit Control in Mixed Traffic Environment;Transportation Research Record: Journal of the Transportation Research Board;2024-02-25

4. Reinforcement learning approach to develop variable speed limit strategy using vehicle data and simulations;Journal of Intelligent Transportation Systems;2024-02-08

5. Multi-Objective Deep Reinforcement Learning for Variable Speed Limit Control;Proceedings of the 2024 16th International Conference on Machine Learning and Computing;2024-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3