1. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., Varoquaux, G., 2013. API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning. pp. 108–122.
2. Automatically optimized and self-evolutional ship targeting system for port state control;Chi,2010
3. The use of risk concept to characterize and select high risk vessels for ship inspections;Degré;WMU J. Maritime Affairs,2007
4. An investigation into prediction+ optimisation for the knapsack problem;Demirović,2019
5. Smart “predict, then optimize”;Elmachtoub;Manage. Sci.,2022