Exploiting negative correlation for unsupervised anomaly detection in contaminated time series
-
Published:2024-09
Issue:
Volume:249
Page:123535
-
ISSN:0957-4174
-
Container-title:Expert Systems with Applications
-
language:en
-
Short-container-title:Expert Systems with Applications
Author:
Lin XiaohuiORCID,
Li ZuoyongORCID,
Fan HaoyiORCID,
Fu YanggengORCID,
Chen XinweiORCID
Funder
Zhengzhou University
Minjiang University
Reference32 articles.
1. Akcay, S., Atapour-Abarghouei, A., & Breckon, T. P. (2019). Ganomaly: Semi-supervised anomaly detection via adversarial training. In Asian conference on computer vision (pp. 622–637).
2. Audibert, J., Michiardi, P., Guyard, F., Marti, S., & Zuluaga, M. A. (2020). Usad: Unsupervised anomaly detection on multivariate time series. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 3395–3404).
3. Unsupervised time series outlier detection with diversity-driven convolutional ensembles;Campos;Proceedings of the VLDB Endowment,2021
4. The UCR time series archive;Dau;IEEE/CAA Journal of Automatica Sinica,2019
5. A hybrid prototype selection-based deep learning approach for anomaly detection in industrial machines;de Paula Monteiro;Expert Systems with Applications,2022