A Convolutional Neural Network approach for image-based anomaly detection in smart agriculture

Author:

Mendoza-Bernal José,González-Vidal AuroraORCID,Skarmeta Antonio F.

Funder

University of Murcia

Publisher

Elsevier BV

Reference39 articles.

1. Slic superpixels;Achanta,2010

2. The history began from AlexNet: A comprehensive survey on deep learning approaches;Alom,2018

3. A review on the main challenges in automatic plant disease identification based on visible range images;Barbedo;Biosystems Engineering,2016

4. Learning long-term dependencies with gradient descent is difficult;Bengio;IEEE Transactions on Neural Networks,1994

5. Convolutional neural networks for the automatic identification of plant diseases;Boulent;Frontiers in Plant Science,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Video surveillance in smart cities: current status, challenges & future directions;Multimedia Tools and Applications;2024-06-24

2. Research on the application of convolutional neural network based on PyTorch framework in handwritten digit recognition;International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024);2024-06-13

3. Towards sustainable agriculture: Harnessing AI for global food security;Artificial Intelligence in Agriculture;2024-06

4. An improved autoencoder-based approach for anomaly detection in industrial control systems;Systems Science & Control Engineering;2024-04-18

5. Enhancing Precision in Rice Leaf Disease Detection: A Transformer Model Approach with Attention Mapping;2024 International Conference on Advances in Computing, Communication, Electrical, and Smart Systems (iCACCESS);2024-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3