An integrated feature learning approach using deep learning for travel time prediction
Author:
Publisher
Elsevier BV
Subject
Artificial Intelligence,Computer Science Applications,General Engineering
Reference45 articles.
1. A simulation optimization approach to apply value at risk analysis on the inventory routing problem with backlogged demand;Abdollahi;International Journal of Industrial Engineering Computations,2014
2. Hybrid approach for short-term traffic state and travel time prediction on highways;Allström;Transportation Research Record,2016
3. A novel benchmark methodology for estimating industrial electricity demand considering unsteady socio-economic conditions;Azadeh;International Journal of Business Performance Management,2017
4. Artificial immune simulation for improved forecasting of electricity consumption with random variations;Azadeh;International Journal of Electrical Power & Energy Systems,2014
5. Representation learning: A review and new perspectives;Bengio;IEEE Transactions on Pattern Analysis and Machine Intelligence,2013
Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Travel time prediction for an intelligent transportation system based on a data-driven feature selection method considering temporal correlation;Transportation Engineering;2024-12
2. A Review on Machine Learning in Intelligent Transportation Systems Applications;The Open Transportation Journal;2024-09-11
3. A graph-based approach for traffic prediction using similarity and causal relations between nodes;Knowledge-Based Systems;2024-07
4. Expressway Vehicle Arrival Time Estimation Algorithm Based on Electronic Toll Collection Data;Sustainability;2024-06-29
5. Travel time prediction for an intelligent transportation system based on a data-driven feature selection method considering temporal correlation;2024-04-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3