1. Bär, D., Zesch, T., & Gurevych, I. (2015). Composing measures for computing text similarity. Technical Report TUD-CS-2015-0017, Darmstadt, Germany, 2015. https://tuprints.ulb.tu-darmstadt.de/id/eprint/4342, accessed on 10 July 2020.
2. Campos, D. F., Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng, L., & Mitra, B. (2016). MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. ArXiv, arXiv:1611.09268v3.
3. Cubuk, E .D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2019). AutoAugment: Learning Augmentation Strategies From Data. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), Long Beach, CA, USA, 2019 (pp. 113–123), Computer Vision Foundation. DOI: 10.1109/CVPR.2019.00020.
4. Fadaee, M., Bisazza, A., & Monz. C. (2017). Data augmentation for low-resource neural machine translation. In Proceedings of the 55th annual meeting of the association for computational linguistics (Volume 2: Short Papers), Vancouver, Canada, 2017 (pp. 567–573). Association for Computational Linguistics. DOI: 10.18653/v1/P17-2090.
5. Cross-lingual unsupervised sentiment classification with multi-view transfer learning proceedings of the 58th annual meeting of the association for computational linguistics;Fei,2020