1. Aksan, E., & Hilliges, O. (2019). STCN: Stochastic temporal convolutional networks. arXiv preprint arXiv:1902.06568.
2. Bai, S., Kolter, J. Z., & Koltun, V. (2018). An Empirical Evaluation Of Generic Convolutional And Recurrent Networks For Sequence Modeling. ArXiv.Org. https://arxiv.org/abs/1803.01271.
3. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neuronal networks on sequence modeling. Neuronal and Evolutionary Computing, 1412. arXiv preprint arXiv:1412.3555.
4. Early Fault Detection in the Main Bearing of Wind Turbines Based on Gated Recurrent Unit (GRU) Neural Networks and SCADA Data;Encalada-Davila;IEEE/ASME Transactions on Mechatronics,2022
5. FAA. (1998). AC 25.1309-1A system design and analysis. Federal Aviation Administration. https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_25_1309-1A.pdf.