Comparative study on the performance of different machine learning techniques to predict the shear strength of RC deep beams: Model selection and industry implications
Author:
Publisher
Elsevier BV
Subject
Artificial Intelligence,Computer Science Applications,General Engineering
Reference54 articles.
1. ACI Committee 318. 2014. ACI 318-14 - Building Code Requirements for Structural Concrete.
2. Strength and behavior in shear of reinforced concrete deep beams under dynamic loading conditions;Adhikary;Nuclear Engineering and Design,2013
3. Assessing the accuracy of RC design code predictions through the use of artificial neural networks;Ahmad;International Journal of Advanced Structural Engineering,2018
4. Deep learning in the construction industry: A review of present status and future innovations;Akinosho;Journal of Building Engineering,2020
5. Mechanical behaviour and non-linear analysis of short beams using softened truss and direct strut & tie models;Bakir;Engineering Structures,2005
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning predictions for bending capacity of ECC-concrete composite beams hybrid reinforced with steel and FRP bars;Case Studies in Construction Materials;2024-12
2. Hybrid machine learning with optimization algorithm and resampling methods for patch load resistance prediction of unstiffened and stiffened plate girders;Expert Systems with Applications;2024-09
3. Prediction of the shear strength of lightweight concrete beams without web reinforcement based on a machine learning model optimized by a genetic algorithm;Structures;2024-07
4. Prediction and reliability analysis of shear strength of RC deep beams;Scientific Reports;2024-06-25
5. Improved forecasting of the compressive strength of ultra‐high‐performance concrete (UHPC) via the CatBoost model optimized with different algorithms;Structural Concrete;2024-05-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3