1. Bortsova, G., Dubost, F., Hogeweg, L., Katramados, I., & Bruijne, M. D. (2019, October). Semi-supervised medical image segmentation via learning consistency under transformations, Medical Image Computing and Computer Assisted Intervention (MICCAI), Shenzhen, China, 11769, 810-818. https://doi.org/10.1007/978-3-030-32226-7_90.
2. Chen, C., Bai, W., & Rueckert, D. (2018, September). Multi-task learning for left atrial segmentation on GE-MRI, Statistical Atlases and Computational Models of the Heart, Granada, Spain, 11395, 292–301. https://doi.org/10.1007/978-3-030-12029-0_32.
3. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A. L., & Zhou, Y. (2021). TransUNet: Transformers make strong encoders for medical image segmentation, arXiv preprint arXiv: 2102.04306. https://arxiv.org/abs/2102.04306.
4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., et al., & Houlsby, N. (2021, May). An image is worth 16x16 words: Transformers for image recognition at scale, International Conference on Learning Representations (ICLR), Vienna, Austria. https://openreview.net/forum?id=YicbFdNTTy.
5. Hang, W., Feng, W., Liang, S., Yu, L., Wang, Q., Choi, K. S., & Qin, J. (2020, October). Local and global structure-aware entropy regularized mean teacher model for 3D left atrium segmentation, Medical Image Computing and Computer Assisted Intervention (MICCAI), Lima, Peru, 12261, 562-571. https://doi.org/10.1007/978-3-030-59710-8_55.