Cost-sensitive payment card fraud detection based on dynamic random forest and k -nearest neighbors

Author:

Nami Sanaz,Shajari Mehdi

Publisher

Elsevier BV

Subject

Artificial Intelligence,Computer Science Applications,General Engineering

Reference40 articles.

1. A survey of anomaly detection techniques in financial domain;Ahmed;Future Generation Computer Systems,2016

2. Cardwatch: A neural network based database mining system for credit card fraud detection;Aleskerov,1997

3. Example-dependent cost-sensitive logistic regression for credit scoring;Bahnsen,2014

4. Example-dependent cost-sensitive decision trees;Bahnsen;Expert Systems with Applications,2015

5. Detecting credit card fraud using periodic features;Bahnsen,2015

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Bayesian Imprecise Classification method that weights instances using the error costs;Applied Soft Computing;2024-11

2. Profit-sensitive machine learning classification with explanations in credit risk: The case of small businesses in peer-to-peer lending;Electronic Commerce Research and Applications;2024-09

3. Research on Advance Machine Learning Based Decision Support System for Frauds Detection and Prevention in Online Banking System;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-06-14

4. Identifying Fraudulent Credit Card Transactions Using AI;2024 4th International Conference on Information Communication and Software Engineering (ICICSE);2024-05-10

5. One-step Bayesian example-dependent cost classification: The OsC-MLP method;Neural Networks;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3