1. Aas, K., Jullum, M., & Loland, A. (2020). Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. arXiv preprint arXiv:1903.10464.
2. “What is relevant in a text document?”: An interpretable machine learning approach;Arras;PLoS One,2017
3. Arrieta, A. B., Dríaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2019). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. arXiv preprint arXiv:1910.10045.
4. Bracke, P., Datta, A., Jung, C., & Shayak, S. (2019). Machine learning explainability in finance: An application to default risk analysis. Staff Working Paper No. 816, Bank of England.
5. Explainable AI in credit risk management;Bussmann;Frontiers in Artificial Intelligence,2020